The powerful combination of cutting edge technology, abundant experience and advanced know-how makes Lamifil a truly unique manufacturer.
1929
Lamifil is founded as “Société Franco-Belge des Laminors et Tréfileries d’Anvers s.a.” with production sites in Hemiksem in Belgium and Chauny in France. In the 20th century Lamifil will become an internationally known manufacturer of copper rod and a wide range of copper wires for various applications.

1959
Lamifil expands its business activities. Aluminium wire rod, drawn wire and conductors become a core activity. The advantages of aluminium over copper for use in electrical grids are the higher conductivity to weight ratio and the lower overall cost.

1997
Koramic Investment Group, an industrial investor, takes control of Lamiltef Industries, the former holding company of Lamifil. Today Koramic Investment Group is still the reference shareholder of Lamifil and is giving the company the freedom to further expand its business activities.

1998
The production site in Hemiksem is given a new name: Lamiltef becomes Lamifil. Production of copper wire moves to a sister company. A continuous casting system is commissioned and production of copper alloys is started.

2001
Lamifil redefines its mission and focuses on two core activities. One is the production of aluminium and aluminium alloy wires and conductors for electrical or mechanical applications. The other is the production of copper and copper alloy wires for railway electrification and special applications.

2005
A continuous investment programme is initiated to allow Lamifil to continue its growth. Among the investments are an additional vertical upcaster for the production of copper alloys, increased annealing capacity and strand machines for both aluminium and copper wires, as well as a conform machine for the production of solid aluminium conductors used in underground cables.

Today Lamifil’s core business is the production of wire and conductors in aluminium, aluminium alloys, copper and copper alloys.

Lamifil has an annual production capacity of 44 000 equivalent tonnes of aluminium and 5 000 tonnes of copper.

Lamifil designs, manufactures and supplies quality products for a wide range of global markets. Aluminium and copper is transformed into a wide variety of semi-finished or finished products:

- Solid and stranded aluminium conductors used as core for underground cables
- Overhead conductors ranging from conventional designs up to Ultra High Conductivity AAAC or High Temperature Low Sag ACCC™ and GAP conductors as well as other advanced designs for transmission and distribution of electricity
- Aluminium alloy wires for mechanical applications such as fencings, nails, needles, rivets and clips and staples for the food industry
- Aluminium wire rod used for steel de-oxidation
- Aluminium alloy wires for optical ground and phase wire
- Copper alloy wire to produce special cables for automotive, electronics and aviation
- Copper and copper alloy wires and conductors for railway electrification

Lamifil is located between Brussels, the capital of the European Union, and Antwerp, one of the largest ports in the world and an important logistical centre. This central location allows us to easily ship our products to customers all over Europe and around the world.

The powerful combination of innovative technology, abundant experience and advanced know-how made Lamifil one of Europe’s largest, independent producers in this field.
For more than 50 years Lamifil has been manufacturing conductors for electrical power transmission markets. From conventional up to advanced overhead conductors for transmission networks at 400 kV and higher, Lamifil products have proved their reliability and efficiency, day in day out.

The product range which Lamifil manufactures covers the entire spectrum of bare conductors used in power transmission infrastructure. In addition to its range of conventional overhead conductors, Lamifil has significantly contributed to the development of much more advanced designs. Lamifil owes its unique position to the powerful combination of metallurgical expertise and stranding know-how.

Overhead conductors designed to work at normal operating temperatures

For use at normal operating temperatures Lamifil manufactures a range of conventional overhead conductors of either homogeneous or heterogeneous design.

- AAC - All Aluminium Conductor.
- AAAC - All Aluminium Alloy Conductor.
- ACSR - Aluminium Conductor Steel Reinforced.
- AACSR - Aluminium Alloy Conductor Steel Reinforced.
- ACAR - Aluminium Conductor Alloy Reinforced.

Increased efficiency

20% more power

In addition to these conventional conductors Lamifil has developed All Aluminium Alloy Conductors with Ultra High Conductivity. The AAAC UHC is probably the most efficient overhead conductor available today.

- AAAC UHC - All Aluminium Alloy Conductor with Ultra High Conductivity.

AAAC UHC lowers CO₂ emissions by reducing the need for generation capacity to compensate network losses.

A full and innovative range of overhead conductors developed to meet the challenges of today and providing solutions for tomorrow...

One of the tools to optimize conductor designs is the replacement of round wires by trapezoidal or z-shaped wires. Depending on the objective, several options can be chosen:

- **Same weight, smaller overall diameter, same capacity:** lower ice and wind loading, less forces on towers, lighter structures, less environmental impact. Overall diameter reduced by up to 10%.
- **Same overall diameter, higher section, increased capacity:** aluminium section can be increased by up to 20%.
- **Anything in between, with a specific strength to conductivity ratio of the alloy for optimised efficiency.**
Overhead conductors designed to work at elevated operating temperatures

Lamifil has developed a full range of high temperature conductors. In several conductor designs Aluminium Zirconium is used to allow operating temperatures up to 230°C continuously or 310°C peak. Other designs use fully annealed aluminium.

- **TACSR** - Thermal Resistant Aluminium Conductor Steel Reinforced.
 TACSR Conductors are a first step to upgrade overhead lines where ACSR is installed. Care needs to be taken however with respect to sag due to the thermal expansion of the conductor.

- **G(Z)TACSR** - Gap Type (Super) Thermal Resistant Aluminium Conductor Steel Reinforced.
 In order to take the full benefit of the AlZr alloys, this special conductor design has been developed to keep sag within the limits. As a result the current carrying capacity can be doubled when compared to conventional conductors.

- **ACSS** - Aluminium Conductor Steel Supported.
 While the aluminium in the conductors above is contributing to the strength of the conductor, ACSS conductors have taken a different road and rely on the strength of a high strength steel core. To obtain a good conductivity, fully annealed trapezoidal high-efficiency aluminium wires are stranded around the steel core.

100% more power
Increased efficiency

Taking advantage of the latest developments in composite technology, Lamifil has set up a partnership with CTC Cable Corporation to develop the ultimate conductor for today’s challenges. This conductor design combines the extreme high strength and low weight of a carbon fibre composite core with extreme conductivity of fully annealed aluminium wires. This results in high transmission capacity and very low sag.

- **ACCC™** - Aluminium Conductor Composite Core.

Choosing AAAC UHC and ACCC™ conductors is effectively working for a better environment and increasing the reliability of your network.

AAAC UHC and ACCC™ conductors give superb investment returns from the value of energy savings alone.

Special solutions and designs
Where very specific design criteria or specific needs have to be dealt with, Lamifil can rely on its broad knowledge of designing and manufacturing conductors. This ability together with the complete control of the production process from molten metal to finished conductor makes Lamifil your ideal partner for tailor-made designs.

Lamifil can reach a filling factor of 98.5%.
Lamifil is a vertically integrated manufacturer of aluminium and aluminium alloy wire rod used for a wide range of electrical applications. The appropriate alloy will be selected or developed in order to optimise the balance between mechanical and electrical properties. Lamifil is making the full advantage of its metallurgic know-how available to transmission and distribution network owners.

Aluminium alloys

Aluminium Magnesium Silicon also called AMS or Aldrey is typically used for AAAC overhead conductors. It can be used up to 90°C.

Lamifil has developed AMS alloys with improved conductivity while keeping the same mechanical strength. This achievement allows Lamifil to offer mechanically equivalent AAAC conductors but with a higher conductivity resulting in significantly lower power losses.

<table>
<thead>
<tr>
<th>Specification EN 50183 AL2</th>
<th>Standard</th>
<th>Lamifil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum conductivity IACS</td>
<td>52,50</td>
<td>56,07</td>
</tr>
<tr>
<td>Maximum resistivity at 20°C</td>
<td>32,84</td>
<td>30,75</td>
</tr>
<tr>
<td>Minimum strength (N/mm²)</td>
<td>315-325</td>
<td>315-325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification EN 50183 AL3</th>
<th>Standard</th>
<th>Lamifil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum conductivity IACS</td>
<td>53,00</td>
<td>56,52</td>
</tr>
<tr>
<td>Maximum resistivity at 20°C</td>
<td>32,53</td>
<td>30,50</td>
</tr>
<tr>
<td>Minimum strength (N/mm²)</td>
<td>295</td>
<td>295</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification EN 50183 AL4</th>
<th>Standard</th>
<th>Lamifil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum conductivity IACS</td>
<td>52,88</td>
<td>55,61</td>
</tr>
<tr>
<td>Maximum resistivity at 20°C</td>
<td>32,60</td>
<td>31,00</td>
</tr>
<tr>
<td>Minimum strength (N/mm²)</td>
<td>330-342</td>
<td>330-342</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification EN 50183 AL5</th>
<th>Standard</th>
<th>Lamifil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum conductivity IACS</td>
<td>55,23</td>
<td>56,90</td>
</tr>
<tr>
<td>Maximum resistivity at 20°C</td>
<td>31,20</td>
<td>30,30</td>
</tr>
<tr>
<td>Minimum strength (N/mm²)</td>
<td>295</td>
<td>295</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification EN 50183 AL6</th>
<th>Standard</th>
<th>Lamifil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum conductivity IACS</td>
<td>55,61</td>
<td>56,52</td>
</tr>
<tr>
<td>Maximum resistivity at 20°C</td>
<td>31,00</td>
<td>30,50</td>
</tr>
<tr>
<td>Minimum strength (N/mm²)</td>
<td>304-314</td>
<td>304-314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification EN 50183 AL7</th>
<th>Standard</th>
<th>Lamifil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum conductivity IACS</td>
<td>57,47</td>
<td>58,44</td>
</tr>
<tr>
<td>Maximum resistivity at 20°C</td>
<td>30,00</td>
<td>29,50</td>
</tr>
<tr>
<td>Minimum strength (N/mm²)</td>
<td>255-275</td>
<td>255-275</td>
</tr>
</tbody>
</table>

Fully annealed aluminium

The main advantage of fully annealed or soft aluminium is the higher conductivity. The maximum continuous operating temperature is limited by the type of conductor itself rather than by the aluminium.

<table>
<thead>
<tr>
<th>Specification IEC 60121</th>
<th>Standard</th>
<th>Lamifil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum conductivity IACS</td>
<td>61,57</td>
<td>63,00</td>
</tr>
<tr>
<td>Maximum resistivity at 20°C (Ωmm²/km)</td>
<td>28,00</td>
<td>27,35</td>
</tr>
<tr>
<td>Minimum strength (N/mm²)</td>
<td>60-80</td>
<td>60-80</td>
</tr>
</tbody>
</table>

Hard drawn aluminium

Hard drawn aluminium is typically used for ACSR conductors. It can be used up to 80°C.

<table>
<thead>
<tr>
<th>Specification EN 60889</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum conductivity IACS</td>
<td>61,00</td>
</tr>
<tr>
<td>Maximum resistivity at 20°C (Ωmm²/km)</td>
<td>28,26</td>
</tr>
<tr>
<td>Minimum strength (N/mm²)</td>
<td>160-200</td>
</tr>
</tbody>
</table>
Al 59 or AA1120 is also used for AAAC overhead conductors. Compared to the AMS alloys above, conductivity is quite high but the strength has been significantly reduced. It can be used up to 90°C.

Specification SS 424 08 13
- Minimum conductivity IACS *: 59.35
- Maximum resistivity at 20°C (Ω*mm²/km): 29.05
- Minimum strength [N/mm²] **: 230-250

Lamifil aluminium zirconium alloys

By doping aluminium with zirconium the temperature at which the annealing process of the aluminium starts, is considerably increased. Therefore aluminium zirconium alloys can resist higher continuous temperatures. Several types of AlZr can be distinguished depending on the Zr content and the manufacturing process: TAL, ZTAL, KTAL and XTAL.

Specification IEC 62004 AT1 (TAL)
- Minimum conductivity IACS: 60.00
- Maximum resistivity at 20°C (Ω*mm²/km): 28.73
- Minimum strength [N/mm²] **: 159-169
- Maximum allowable continuous operating temperature (40 years): 150°C
- Maximum allowable short time temperature (400 h): 180°C

Specification IEC 62004 AT2 (KTAL)
- Minimum conductivity IACS: 55.00
- Maximum resistivity at 20°C (Ω*mm²/km): 31.35
- Minimum strength [N/mm²] **: 225-248
- Maximum allowable continuous operating temperature (40 years): 150°C
- Maximum allowable short time temperature (400 h): 180°C

Specification IEC 62004 AT3 (ZTAL)
- Minimum conductivity IACS: 60.00
- Maximum resistivity at 20°C (Ω*mm²/km): 28.73
- Minimum strength [N/mm²] **: 159-176
- Maximum allowable continuous operating temperature (40 years): 210°C
- Maximum allowable short time temperature (400 h): 240°C

Specification IEC 62004 AT4 (XTAL)
- Minimum conductivity IACS: 58.00
- Maximum resistivity at 20°C (Ω*mm²/km): 29.73
- Minimum strength [N/mm²] **: 159-169
- Maximum allowable continuous operating temperature (40 years): 230°C
- Maximum allowable short time temperature (400 h): 310°C

* mean value of wires in conductor
** depending on diameter of individual wires in conductor
*** also for IEC 60104 Type B applications
AAAC UHC conductors offer superior energy efficiency and are probably the most efficient overhead conductors available today. Each kilogram of conductor up in the air consists of ultra high conductive aluminium alloy and is effectively transporting electrical current. Thanks to the unique properties of the alloy, AAAC UHC conductors operate cooler and more efficiently, compared to conventional AAAC conductors.

Lamifil has developed a truly unique conductor to reduce network losses and CO₂ emissions.

AAAC UHC vs. standard AAAC

<table>
<thead>
<tr>
<th>AAAC UHC - ARAUCARIA</th>
<th>Joule losses</th>
<th>Loss reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 50183 AL2</td>
<td>45,9 kW/km</td>
<td>0,0 kW/km</td>
</tr>
<tr>
<td>EN 50183 AL 3</td>
<td>45,5 kW/km</td>
<td>-0,4 kW/km</td>
</tr>
<tr>
<td>EN 50183 AL5</td>
<td>45,0 kW/km</td>
<td>-0,9 kW/km</td>
</tr>
<tr>
<td>NGTS 3.4.2. Extra High Conductivity</td>
<td>43,9 kW/km</td>
<td>-1,9 kW/km</td>
</tr>
<tr>
<td>Lamifil AAAC UHC</td>
<td>41,7 kW/km</td>
<td>-4,2 kW/km</td>
</tr>
</tbody>
</table>

Boundary Conditions: \(v_{\text{wind}} = 1 \text{ m/s}, T_{\text{ambient}} = 15 \text{ °C}, I = 1000 \text{ A} \)

Energy saving per year: 36 792 kWh per km
CO₂ emission reduction per year: 12,9 ton per km
Cost saving per year: 2 207 EUR per km

Saving on a 100 km twin bundle double circuit OHL: more than 2 500 000 EUR per year.
A unique opportunity to make your network run more environmentally friendly at a lower cost and with a higher efficiency...

- More conductive aluminium reduces line losses by up to 9% compared to conventional AAAC conductors of the same size and weight.
- Replacing existing ACSR conductors by AAAC UHC can increase the capacity by up to 35%.
- Lower line losses mean less power generation and less CO₂ emissions to serve the same load.
- Any AAAC conductor can be replaced by an AAAC UHC conductor just by replacing the conductor itself.
- AAAC UHC conductors allow transmission and distribution system owners to reduce the total cost of ownership of the network.

This conductor is also very well suited to replace most conventional ACSR conductors, particularly those with steel sections below 15%. Due to higher strength, higher conductivity and lower weight for comparable diameter, initial sag can be reduced, taking full advantage of increased capacity and conductivity.

Lamifil AAAC UHC conductors effectively and significantly reduce line losses without a reduction in mechanical properties.

AAAC UHC can be designed using a mix of round and shaped wires. Combining the design with our Ultra High Conductivity results in truly superior conductors, unique on today’s market.

Line hardware
AAAC UHC conductors use the same type of line hardware, as a conventional AAAC conductor.

Installation
AAAC UHC conductors can be installed in exactly the same way as a similar conventional AAAC conductor.
Gap conductors consist of layers of trapezoidal shaped, temperature resistant aluminium zirconium wires around a high strength steel core.

To allow the aluminium wires to move freely over the core the outer diameter of the core is smaller than the inner diameter of the innermost layer of AlZr wires. This “gap” becomes an essential part of the conductor and is giving the conductor its special characteristics.

Gap conductors have been used for many years and are offering excellent sag and current carrying characteristics.

The original Gap conductor design has several layers of round AlZr wires around one layer of trapezoidal wires. After 2000 a new design was introduced with all layers consisting of trapezoidal wires. The benefit of this design is the higher filling factor and consequently the smaller outside diameter, which offers significant advantages with respect to wind and ice loading on the one hand while reducing corona effect on the other hand.

Proven solutions to increase capacity

- Gap conductors are an excellent solution for uprating overhead lines. Existing ACSR conductors can easily be replaced by Gap conductors offering up to double the capacity.
- Excellent mechanical properties and substantial reduction of thermal sag under various load conditions allow to increase transmission capacity on existing lines at a low cost and in a relatively short time.
- No or limited modifications to towers or structures are required.
- Several types of AlZr alloys can be used, each having different characteristics.

<table>
<thead>
<tr>
<th>Operating temperature</th>
<th>Continuous</th>
<th>Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTACSR</td>
<td>150°C</td>
<td>180°C</td>
</tr>
<tr>
<td>GZTACSR</td>
<td>210°C</td>
<td>240°C</td>
</tr>
</tbody>
</table>

Innovative design

- Extra & Ultra High Strength steel core with adequately tested galvanisation and temperature resistance up to 250°C.
- High temperature grease developed to allow the aluminium to move freely over the steel core while protecting the core from long term corrosion, resistant to temperatures up to 300°C.
- Optimised in-house production of a wide range of aluminium zirconium alloys
- All layers consisting of trapezoidal wires, giving more conductive aluminium section.
- Trapezoidal wires resulting in a fill factor of 98.5%.
- Environmental friendly surface finish for an emissivity higher than 0.6 right from day one.
Line hardware

Several manufacturers have developed a complete range of hardware for use with Gap conductors. These products are effective and easy to use. Lamifil can advise and offer line hardware for use with Gap conductors.

Installation

After a short training about the characteristics and installation of the conductor and the fittings, Gap conductors can easily be installed by experienced linesmen. If required, Lamifil can advise and offer specific installation tools for use with Gap conductors.

In order to install the conductor, pulling eyes are required. These can be provided by Lamifil. While the total conductor is held into position with appropriate clamps near the tension towers, the steel core is brought to tension and fixed to the dead end clamps. The aluminium is given some time to soak over the steel core before the tension clamp is terminated. Thanks to the combination of the typical construction of the Gap conductor and the installation method, the knee point temperature is now equal to the installation temperature.

Once installed, the conductor will behave differently below and above the knee point temperature. Below this temperature the aluminium will contribute to the strength of the Gap conductor. Above this temperature the high strength steel core will take the full load of the conductor and determine the thermal behaviour, resulting in little elongation and low sag.
A CCC™ is a breakthrough technology that uses a high strength carbon and glass fibre core to increase the capacity and efficiency of overhead power lines.

The Aluminum Conductor Composite Core (ACCC™) uses a high strength hybrid composite core to resist thermal sag through its low coefficient of thermal expansion. The ACCC™ core’s lighter weight allows the incorporation of additional aluminum in any given diameter without a weight penalty. This reduces line losses while increasing transmission capacity. In this way, the patented core is the strength member of a highly efficient overhead conductor: the next generation in transmission. ACCC™ technology replaces older conductors, with the more energy efficient solution required for today’s needs.

ACCC™ conductors carry power over fully annealed trapezoidally shaped high-efficiency aluminum wires helically wound around the hybrid carbon fibre core. The ACCC™ conductor was designed to combine energy efficiency with high temperature operation and will operate at cooler temperatures under equal power flow when compared with other conductors of similar diameter and weight.

The most advanced and efficient conductor for thermal upgrades

- More ultra highly conductive aluminium reduces line losses by 30-40% compared to ACSR or ACSS conductors of similar size and weight.
- Lower line losses means less power generation and less CO₂ emissions to serve the same load.
- Doubles the capacity of existing ACSR lines with minimal tower modifications because lower thermal elongation.
- The ability to withstand higher operating temperatures and greater conductivity provide greater throughput.
- Brings up to date efficiency and cost saving to new lines and new corridor designs, enabling lower tower heights or a reduced number of towers by using the higher strength and substantial reduction in thermal sag to facilitate planning permissions and reduce costs.

Innovative design

- Stronger and lighter than steel cores.
- Lower coefficient of thermal expansion reduces sag.
- 25-30% more conductive aluminium without a size or weight penalty increases capacity and efficiency.
Line hardware

A complete range of hardware has been developed for use with ACCC™ conductors. This hardware is effective and easy to use with minimal training. In order to guarantee optimised performance of the ACCC™ conductor, tension or dead end clamps and splices or compression joints are produced by properly licensed manufacturers. A range of accessories that are in contact with the ACCC™ conductor, are approved for use in conjunction with ACCC™ conductor. Details are available on demand.

Installation

Only authorised ACCC™ installers should carry out the installation of ACCC™ conductors. Lamifil can arrange for the necessary training and supervision of installations during which nominated installers or teams can acquire experience and certification as ACCC™ installers.

While ACCC™ conductors do not require any specific installation tool, equipment must be suitable for the particular ACCC™ conductor size. In this respect, Lamifil can offer advice and if required recommend installation tools for use with ACCC™ conductor. Of special advantage is the systematic use of 60 ton compression tools on all sizes of ACCC™ to press the tension clamps and mid span joints (or splices) on the ACCC™ conductor, making life easier for installation crews.

ACCC™ conductor datasheets can be downloaded from our website.

ACCC™ conductor is produced by Lamifil nv under license from CTC Cable Corp.

Efficiency and current carrying capacity for different types of conductor of the same weight

* at maximum operating temperature
Lamifil is committed to one overriding goal: providing total customer satisfaction. To achieve this, Lamifil has implemented a quality management system based on the ISO 9001:2008 standard. Wherever possible Lamifil aims to develop close partnerships with its customers. Through data analysis and permanent dialogue, Lamifil puts “continuous improvement” into practice.

The whole manufacturing process is subjected to stringent quality controls, which involve checks on the state of the machinery, the manufacturing parameters and the product features. Highly developed control technology and test equipment for all the relevant features are available for this work.

Lamifil’s reputation is that of a high-end supplier, continuously improving its products by applying a consistent and all-encompassing quality policy.

Lamifil pursues a policy of continuous environmental improvement and has appointed an environmental coordinator who reports to the Managing Director. Lamifil is convinced that the quality of our environment determines the quality of our future.

Lamifil is an important solution provider with respect to overhead conductors and in particular the development of new technologies in this field. Among its customers around the globe are renowned transmission system operators as well as leading international contractors.

Providing energy solutions for today’s power networks.

Several electrical grids rely on Lamifil overhead conductors to guarantee a reliable power supply. Since Lamifil started producing these products in 1959, overhead conductors have been supplied in Europe, America, Africa and Asia.

Up to 2009 Lamifil has manufactured and supplied AAAC UHC, GZTACSR and ACC™ conductors to more than 10 countries including the United Kingdom, Belgium, the Netherlands, Poland, Germany, China, Indonesia, the United States, Spain and Portugal.

<table>
<thead>
<tr>
<th>Lamifil Supply Record up to 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional overhead conductors</td>
</tr>
<tr>
<td>AAAC UHC</td>
</tr>
<tr>
<td>G(Z)TACSR</td>
</tr>
<tr>
<td>ACC™</td>
</tr>
</tbody>
</table>

Lamifil is an important solution provider with respect to overhead conductors and in particular the development of new technologies in this field. Among its customers around the globe are renowned transmission system operators as well as leading international contractors.

Lamifil, a name synonymous with high-quality products and sustainability.
Lamifil nv

Frederic Sheidlaan
2620 Hemiksem
Belgium

phone: +32 3 870 06 11
fax: +32 3 870 06 74
email: lamifil@lamifil.be

www.lamifil.be

The Driving Force for Your Business